
 Operations on this graph produce reconstructed image!

•A new graph-based algorithm *
•Inspired by advanced robotic vision, computer science

•Raj et al, Magnetic Resonance in Medicine, Jan 2007,

•Raj et al, Computer Vision and Pattern Recognition, 2006

•Singh et al., MRM (to appear)

•Graph

•S •T

Folded MR data Reconstructed image

Recon Core subproject III

MRI Reconstruction Using Graph Cuts: 
Ashish Raj, Weill Cornell Medical College New York



Project Summary

 Aim1: To apply EPIGRAM to fast high-resolution 
structural brain imaging

– Image priors to be empirically evaluated 

 Aim 2: Extending the method from 2D to 2D + 
time data 

 Aim 3: Validation

 Aim 4: Developing new efficient, feasible Graph 
algorithms

Significant advances were made in all aims (except Aim 3)



x(p) x(q)

y1(p)

s1(p)

s1(q) s2(p) s2(q)

y2(p)

s3(p)

s3(q)

y3(p)

)(

)(

)()(

)()(

)()(

)(

)(

)(

33

22

11

3

2

1

qx

px

qsps

qsps

qsps

py

py

py

3



Least squares solution

 Least squares estimate:

Encodes different 
Coil outputs

–Famous MR algorithm: SENSE (1999)

 Linear system



EPIGRAM Summary

 Used Markov Random Field priors

–If V “levels off”, this preserves edges

 Finds the MAP estimate

Makes Hx close to y Makes x piecewise smooth



Phase Constrained EPIGRAM: Reff = 4.5

Reference: 

Sum of squares

Regularized SENSE Fast EPIGRAM

New Developments (I):

 Extension of EPIGRAM from 2D to 3D

 Phase-constrained reconstruction
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New, Faster  Graph Cut Algorithm: Jump Moves

•Reconstruction time of EPIGRAM (alpha expansion) vs Fast EPIGRAM (jump move) 

- after 5 iterations over [32, 64, 128, 256, 512] gray scale labels 

- image size 108x108 pixels. 

• Linear versus exponential growth in in reconstruction time

New Developments (II):
 Fast EPIGRAM – uses “jump moves” rather than “expansion moves”

Up to 50 times faster!
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Jump Move Results: Cardiac Imaging, R=4

•reconstruction for cine SSFP at R = 4

Reference: 

Sum of squares
Regularized SENSE 

(μ = 0.1) 

Regularized SENSE 

(μ = 0.5) 
Fast EPIGRAM
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Automatically Learning Image Priors

New Developments (III):

• The most important aspect of

EPIGRAM is choice of prior

• What is the most appropriate

prior model?

• Recon performance depends

crucially on prior model

•Recall:

Form of V 

determines 

recon image



Pr(x) = Pr(δ) 

image
Diff image

δ = x1 - x2

exponent

Mixture 

weight

cutoff

Automatically Learning Image Priors

• New idea: automatically learning what prior model best fits brain MRI

• Generalization of edge-preserving Gibbs priors successful in EPIGRAM

• Define a class of prior distributions mixture of various powers

New Developments (III):

Original prior model Proposed prior model
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Learning Image Priors: Technique

• Used Markov chain Monte Carlo (McMC) technique to learn unknown

parameters of prior model

• McMC sampling is based on Metropolis-Hastings algorithm

• After 1000s of iterations, gives a posterior distribution of the model

• We use the maximum of this inferred posterior

Histogram of various exponents “visited” by McMC sampler
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exponent

cutoff

Learning Image Priors: Results

• Found a strong maximum of posterior

• Inferred model: exponent = 0.5, cutoff = 25

We believe this prior will be superior to previous prior

Results on brain data awaited
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Learning Image Priors: Simulations

• Shepp-Logan head phantom with different noise and blur (PSF)

• Width of Gaussian blur kernel: 0, 2, 4, 6, 8, 10, 20

• Inferred model should depend on size of blur

• (more blurry image higher exponent)

p = 0.3 p = 0.5 p = 0.7 p = 1.1

p = 1.3 p = 1.7 p = 1.9

psf = 0 psf = 2 psf = 4 psf = 6

psf = 8 psf = 10 psf = 20



Result: found almost linear dependency

Learning Image Priors: Simulations
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New Developments (IV):
 New graph cut algorithm to replace EPIGRAM – does not use

expansion moves at all

 Expect o(10-100x) computational speed up

 Based on exploring null-space of system matrix H

• Let D = null(H), x0 be any solution to y = Hx 

• Let x = x0 + Dη. Then y - Hx = y - H x0 and E(x) = λG(η)

•Henceforth we seek graph cut moves on η rather than x

• Since nullspace is much smaller than space of x, this is much more 

efficient 
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